2. Древесина и пластмассы как конструкционные строительные материалы. Нормативные и расчетные сопр отивления. Коэффициенты условий работы конструкций.

 

РАЗДЕЛ I. ДРЕВЕСИНА И ПЛАСТМАССЫ – КОНСТРУКЦИОННЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ

Для всех строительных материалов имеются области рационального и эффективного использования. Это относится и к древесине, которая во многих районах нашей страны является местным строительным материалом. В некоторых районах древесина имеется в избытке (в так называемых лесоизбыточных районах).

Наша страна является первой в мире по количеству лесных площадей (2 место занимает – Бразилия, 3 место Канада, 4 место — США), которые занимают почти половину территории России – примерно 12,3 млн. км 2 . Основная часть лесов России (примерно ¾ части) расположена в районах Сибири, Дальнего Востока, в северных областях европейской части страны. Преобладающими породами являются хвойные: 37% лесов занимает лиственница, 19% — сосна, 20% — ель и пихта, 8% — кедр. Лиственные породы занимают около ¼ площади наших лесов. Наиболее распространенной породой является береза, занимающая около 1/6 общей площади лесов.

Запасы древесины в наших лесах составляют около 80 млрд. м 3 . Ежегодно заготавливается около 280 млн. м 3 . деловой древесины (т.е. пригодной для изготовления конструкций и изделий). Однако, это количество далеко не исчерпывает естественного годового прироста древесины в отдаленных районах Сибири и Дальнего Востока.

История создания деревянных зданий и сооружений берет свое начало с древнейших времен. Первой конструктивной формой строений был прямоугольный в пла­не сруб из бревен. Постепенно увеличивались площади и объемы строящихся сооруже­ний, расширялось функциональное назначение помещений. Срубы стали возводить много­угольными в плане с наличием внутренних стен, обеспечивающих неизме­няемость сооружений и устойчивость наружных стен.

Наличие огромных лесных запасов на территории России явилось основой многовекового использования древесины в качестве строительного материала для возведения зданий и сооружений жилищного, хозяйственного, культового и других назначений. До настоящего времени сохранились уникальные строения, выполненные зодчими в виде сруба более 250 лет назад. Образцом такого строительства являют­ся существующие нынче храмы в Кижах на Онежском озере, постройки в Малых Карелах Архангельской области (рис.1).

Первые инженерные сооружения человечества – свайные постройки, мосты и плотины были также из дерева. С конца XVII века, когда появилась возможность распиловки бревен на брусья и доски, деревянное строительство вышло на новый этап. Более эко­номичные и легкие сечения древесины позволили создавать эффективные стержневые системы, позволяющие перекрывать значительные пролеты, что дало толчок в развитие архитектуры, мостостроении. Наиболее ярким примером использования древесины в качестве стро­пильных конструкций является конструкция шпиля Адмиралтейства (рис.2), осу­ществленная по проекту И.К. Коробова и сохраненная А.Д. Захаровым при перестройке башни в начале XIX века, фермы для перекрытия Манежа в г. Москве пролетом 48 м, построенные в 1817 г. А.А. Бетанкуром (рис.3).

Рис.1 – Деревянные храмы в Кижах на Онежском озере

Рис.2 – Здание Адмиралтейства в г.С-Петербург

Рис.3 – Монтаж ферм покрытия Манежа в г.Москва

Многолетний опыт строительства зданий различного назначения позво­лил определить рациональные области применения деревянных конструк­ций:

  1. Зрительные и общественные здания, спортивные сооружения, выста­вочные павильоны, рынки и другие пролетом от 18 до 100 м (см. пример на рис.4).
  2. Покрытия гражданских, промышленных и сельскохозяйственных зданий. Целесообразно использовать дощатые и брусчатые фермы со сборкой на стройплощадке (эффективность применения определяется легкостью, прочностью и благоприятными условиями для борьбы с недостатками).
  3. Здания с химически агрессивной средой. В первую очередь, склад­ские здания пролетом до 45 м для перегрузки и хранения минеральных удобрений.
  4. Малоэтажное деревянное домостроение.
  5. Производственные сельскохозяйственные здания.
  6. Неотапливаемые здания производственно-вспомогательного назначения промышленных предприятий.
  7. Неотапливаемые здания и навесы для хранения и переработки сель­скохозяйственной продукции.
  8. Быстровозводимые здания комплектной поставки небольших проле­тов для отдаленных районов крайнего Севера.
  9. Инженерные сооружения — опоры линий электропередачи (с напряжением до 35 кВ), триангуля­ционные и радиопрозрачные мачты и башни, мосты небольшой грузоподъ­емности, пешеходные мосты.

Рис.4 – Схема каркаса крытого легкоатлетического манежа спорткомплекса Метеор в г. Жуковский с несущими дощатоклеенными арками

Нецелесообразно применять деревянные конструкции в местах где затруднены мероприятия по защите древесины от возгорания и попеременного увлажнения (соответственно гниения):

— промышленные здания с большими крановыми нагрузками;

— помещения с повышенной эксплуатационной влажностью (кроме бань).

Читать статью  Что такое акустические свойства строительных материалов

Несмотря на многовековое использование древесины в качестве строительных конструкций, поиск новых технических решений продолжается. В течении последних 20 лет ведутся разработки жестких соединений клееных деревянных элементов (по аналогии с закладными деталями железобетонных конструкций), что позволило открыть новое направление сборных клееных деревянных конструкций. В практике строительства в России и за рубежом реализовано большое количество большепролетных зданий и сооружений из сборных клееных деревянных конструкций. Сочетание узловых вклееных стержней с линейным армированием клееных деревянных элементов является дальнейшим этапом в развитии клееных деревянных конструкций для зданий очень боль­ших пролетов.

Прогрессивные формы индустриальных деревянных конструкций:

1. Монолитные дощатоклееные и клеефанерные конструкции в виде балок, арок, рам и комбинированных систем.

2. Металлодеревянные фермы с дощатоклееным верхним поясом.

3. Кружально-сетчатые пространственные конструкции из стандартных цельных и клееных косяков

В отличие от дерева пластмассы в конструкциях начали использовать с середины прошлого века, после возникновения промышленного производства синтетических материалов.

К основным конструкционным строительным пластмассам относятся:

— прозрачный менее прочный стеклопластик;

— воздухо- и водонепроницаемые ткани и плёнки;

Пластмассовые конструкции применяются в основном в виде стеновых панелей, плит покрытия, светопрозрачных ограждающих элементов различной формы и множеством индивидуальных конструкций, выпускаемых небольшими партиями.

Из наиболее прочных стеклопластиков, расчётное сопротивление сжатию и растяжению которых достигает 100 МПа, выполняют элементы несущих строительных конструкций. Однако это применение возможно только при техническо-экономическом обосновании. Прозрачные стеклопластики используют в качестве светопрозрачных элементов ограждающих конструкций зданий. Из особо прозрачного оргстекла и прозрачного винипласта изготовляют прозрачные части ограждений, пропускающие все части солнечного спектра. Сверхлёгкие пенопласты применяют в средних слоях лёгких ограждающих покрытий и стен.

Особым классом конструкций из пластмасс являются мембраны (прочные, тонкие воздухо- и водонепроницаемые ткани), которые применяются в виде пневматических и тентовых сооружений. Материал в них работает на растяжение и нет опасности потери устойчивости.

В изучаемой дисциплине конструкции из дерева и пластмасс рассматриваются совместно, потому что они относятся к классу лёгких строительных конструкций.

Будущему инженеру-строителю важно уяснить, что конструкции из различных материалов – таких как металл, железобетон, дерево, пластмасса – не противопоставляются друг другу, а применяются в сочетаниях, обеспечивающих наиболее эффективное использование в строительстве свойств, присущих каждому из материалов.

РАЗДЕЛ I. ДРЕВЕСИНА И ПЛАСТМАССЫ – КОНСТРУКЦИОННЫЕ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ

2. Древесина и пластмассы как конструкционные строительные материалы. Нормативные и расчетные сопр отивления. Коэффициенты условий работы конструкций.

Показатели механических свойств древесины определяют обычно при следующих видах испытаний: растяжении, сжатии, изгибе и сдвиге. Поскольку древесина — анизотропный материал, т.е. материал с различными свойствами в разных направлениях, указывают направление действия нагрузок: вдоль или поперек волокон (в радиальном или тангенциальном направлении).

Из-за сопротивления древесины внешним нагрузкам в ней возникают внутренние силы. Эти силы, отнесённые к единице площади сечения (1 см 2 ) называются напряжениями. Максимальное напряжение, предшествующее разрушению тела, называют пределом прочности.

Предел прочности определяют на малых, чистых и не имеющих пороках образцах в лабораториях на испытательных машинах. Эти образцы имеют базисное сечение с размерами 20 * 20 мм и должны включать не менее 4-5 годичных слоёв. Некоторые виды испытаний производят на образцах, сечение которых отличается от указанного.

Прочность при сжатии определяется на образцах призматической формы Предел прочности б, МПа, вычисляют по формуле: бw = Pmax / (a * b), где (a * b) — площадь сечения образца, мм 2 .

В среднем для всех отечественных пород при влажности древесины 12% предел прочности на сжатие вдоль волокон составляет около 50 МПа.

Предел прочности при статическом изгибе, МПа, вычисляют по формуле: бw = (3/2) * ((Pmax*l) / (b * h 2 )), где Pmax — максимальная нагрузка, Н; l — пролет, т.е. расстояние между центрами опор, равный 240 мм; b и h — ширина (в радиальном) и высота (в тангенциальном) направлениях, мм.

Предел прочности при скалывании вдоль волокон определяют по формуле: Tw = Pmax / (b * l), где (b * l) — площадка скалывания, мм 2 .

Величина предела прочности — касательных максимальных напряжений при скалывании вдоль волокон в среднем для всех пород составляет примерно 1/5 от предела прочности при сжатии вдоль волокон. Предел прочности при скалывании поперёк волокон в 2 раза меньше, а предел прочности при перерезании поперёк волокон в 4 раза больше, чем предел прочности при скалывании вдоль волокон.

Деформативность. При кратковременных нагрузках в древесине возникают преимущественно упругие деформации, которые после нагрузки исчезают. До определённого предела зависимость между напряжениями и деформациями близка к линейной (закон Гука). Основным показателем деформативности служит коэффициент пропорциональности — модуль упругости. Модуль упругости вдоль волокон Е = 12-16 ГПа, что в 20 раз больше, чем поперёк волокон. Чем больше модуль упругости, тем более жесткая древесина.

Читать статью  Обзор облицовочных материалов для наружной отделки стен дома?

Эксплуатационные и технологические свойства. Прочность древесины при длительных постоянных нагрузках важно знать в связи с применением её в строительных конструкциях. Показателем этого свойства является предел длительного сопротивления бд.с., который в среднем для всех видов нагрузки составляет примерно 0,5 — 0,6 величины предела прочности при кратковременных статических испытаниях.

Показателем прочности при переменных нагрузках является предел выносливости, средняя величина которого составляет примерно 0,2 от статического предела прочности.

При проектировании деревянных конструкций в расчётах используют не пределы прочности малых образцов древесины, а в несколько раз меньшие показатели — расчётные сопротивления. Они учитывают большие размеры элементов конструкций, наличие пороков древесины, длительность действия нагрузки, влажность, температуру и другие факторы.

Удельная вязкость характеризует способность древесины поглощать работу при ударе без разрушения и определяется при испытаниях на изгиб. Ударная вязкость у древесины лиственных пород в среднем в 2 раза больше, чем у древесины хвойных пород.

Твёрдость характеризует способность древесины сопротивляться вдавливанию более твёрдого тела.

Износостойкость — способность древесины сопротивляться износу, т.е. постепенному разрушению её поверхностных зон при трении. Испытания на износостойкость древесины показали, что износ с боковых поверхностей значительно больше, чем с поверхности торцевого разреза. С повышением плотности и твёрдости древесины износ уменьшился. У влажной древесины износ больше, чем у сухой.

Уникальным свойством древесины является способность удерживать крепления: гвозди, шурупы, скобы, костыли и др. При забивании гвоздя в древесину возникают упругие деформации, которые обеспечивают достаточную силу трения, препятствующую выдёргиванию гвоздя.

Способность гнуться выше у кольцесосудистых пород — дуба, ясеня и др., а из рассеянно-сосудистых — бука; хвойные породы обладают меньшей способностью к загибу. Гнутью подвергают древесину, находящуюся в нагретом и влажном состоянии. Это увеличивает податливость древесины и позволяет вследствие образования замороженных деформаций при последующем охлаждении и сушке под нагрузкой зафиксировать новую форму детали.

Для сравнительной оценки качества древесины используют так называемые удельные характеристики механических свойств, т.е. показатели ее механических свойств, отнесенные к единице плотности.

Удельные характеристики древесины имеют особое значение, когда от изделия или конструкции требуется высокая прочность при малом весе. Это важно для транспортного машиностроения, авиастроения, судостроения и в других случаях.

Пластмассы 1. Нормативные относительные деформации предела термовязкоупругости конструкционных пластмасс , устанавливают по относительной деформации, соответствующей необратимому изменению физико-механических свойств материала.

Примечание. Под необратимым изменением физико-механических свойств понимают расслоения, образование микротрещин, нарушение начальной адгезии между волокнами и матрицей, разрыв части армирующих волокон — для композиционных материалов, «крезинг» — для термопластов, нарушение ячеистой структуры — для пенопластов.

2. Нормативные относительные деформации предела линейной термовязкоупругости конструкционных пластмасс устанавливают по относительной деформации, при которой отклонение от прямой изохронной зависимости между напряжением и деформацией при температуре 23 °С на базе времени не превышает 5 % (черт. 1).

Изохронная кривая напряжение-деформация

3. При расчете конструкций по предельным состояниям первой группы, в зависимости от типа материала и конструкции, расчетная относительная деформация устанавливается по нормативной относительной деформации по п. 1 или по п. 2 приложения 2. Коэффициент надежности по материалу принимают равным или большим 1,0.

В случае, если значение превышает значение расчетную относительную деформацию устанавливают по .

4. Нормативную податливость определяют при кратковременном (порядка 1 min) испытании материала монотонно возрастающей деформацией как отношение нормативной относительной деформации или к соответствующему напряжению.

5. Расчетную податливость , при нормальном напряжении определяют по формуле

, (1) ,где — нормативная податливость при нормальном напряжении, ;

— коэффициент ползучести; — коэффициент температуры; — коэффициент влияния среды.

6. При экспериментальном определении коэффициентов ползучести, температуры и влияния среды относительная деформация образца не должна превышать наименьшей из величин и .

7. Податливость при восстановлении определяют по формуле (2)

где — максимальная остаточная податливость при нормальном напряжении, ; — коэффициент восстановления.

Допускается принимать податливость при нагружении и при разгружении одинаковой и определять максимальную остаточную податливость по формуле : (3)

Время полного восстановления допускается принимать равным 10-кратной продолжительности действия нагрузки, если разница температур за время нагрузки и разгрузки не превышает 10 °С и прочие условия среды одинаковы. В этом случае коэффициент восстановления определяют по формуле

Читать статью  Вопрос 4. Сметная стоимость материалов, конструкций, изделий.

(4) , где — время разгрузки, h; — время нагрузки, h.

8. Расчетные податливости при сдвиге и определяют по нормативным податливостям при сдвиге по формулам (1)-(4). При этом принимают коэффициенты, установленные для нормальных напряжений.

Физические и механические свойства.

Пористость пластмасс можно регулировать в процессе их производства в широких пределах. Так, полимерные пленки, линолеум, стеклопластики практически не имеют пор, а пористость пенопластов может достигать 95. 98%. Поэтому средняя плотность пластмасс может быть близка к истинной плотности — у непористых пластмасс или снижается до 50. 10 кг/м3 — у газонаполненных пластмасс.

Водопоглощение пластмасс очень мало и не превышает для плотных пластмасс 3 %. Большинство пластмасс обладает значительной водостойкостью и стойкостью к водным растворам солей, кислот и щелочей.

Теплостойкость большинства пластмасс невысока (1ОО. 2ОО°С), но отдельные виды пластмасс (фторопласт, кремшшорганические полимеры) выдерживают нагрев до ЗОО. 5ОО°С.

Теплопроводность (0,23. 0,7 Вт/(м-°С) пластмасс низкая, а у газонаполненных пластмасс она близка к теплопроводности воздуха. Отличительной особенностью пластмасс является высокий (в 5. 10 раз выше, чем у других строительных материалов) коэффициент теплового расширения. Это обстоятельство необходимо учитывать при использовании пластмасс, особенно в сочетании с другими материалами,

Прочность некоторых пластмасс значительна и у конструкционных пластмасс, таких, как стеклопластик, может достигать 200. 300 МПа. При этом характерной особенностью пластмасс, отличающих их от каменных материалов, является то, что прочность при растяжении и изгибе у них почти такая же, как при сжатии (у каменных материалов σр= (0,2. 0,1) σСж). Благодаря высокой прочности и малой плотности коэффициент конструктивного качества у пластмасс намного выше, чем у большинства традиционных строительных материалов.

Модуль упругости у пластмасс приблизительно в 10 раз ниже, чем у бетона и стали. Это наряду с характерной для полимерных материалов ползучестью предопределяет их высокую деформативность.

Состояние и перспективы развития конструкций из дерева и пластмасс. Древесина и пластмассы как конструкционные материалы

Основным направлением развития конструкций из дерева в нашей стране является разработка, производство и применение новых клеедеревянных конструкций. Типы конструкций должны быть унифицированы. Заводское производство должно обеспечивать массовое изготовление клеедеревянных конструкций любых требуемых форм и размеров. Клеедеревянные конструкции достаточно стойки против гниения и горения и должны шире применяться в таких отраслях народного хозяйства, как сельскохозяйственные складские, производственные и животноводческие здания, промышленные здания со слабой химически агрессивной средой, общественные здания крупных размеров (спортивные, зрелищные, торговые) и автодорожные мосты.

В перспективе будет расширяться изготовление и применение простейших клеедеревянных балок и арок. Будут находить рациональное применение клеедеревянные рамы и фермы, ребристые и сетчатые купола, клеефанерные балки, плиты и панели.

Пластмассовые конструкции, называемые также конструкциями с применением пластмасс, начали разрабатываться, изготовляться и применяться в нашей стране и за рубежом примерно с середины XX в.

Значительное распространение в нашей стране получили трехслойные плиты и панели покрытий и стен промышленных зданий. Они состоят из среднего пенопластового слоя и наружных слоев из листового материала — металла, асбестоцемента или фанеры. Наиболее эффективны плиты и панели с наружными слоями из тонких алюминиевых листов толщиной порядка 1 мм, масса которых не превосходит 20 кг/м 2

Пневматические конструкции представляют собой замкнутые оболочки из воздухонепроницаемой ткани или пленки, внутри которых воздух находится под постоянным избыточным давлением.

Они имеют небольшую массу (около 1 кг/м 2 ), могут перевозиться любым видом транспорта в сложенном виде и устанавливаются на опорный контур в считанные дни. Сущест также пневмовантовые и тентовые конструкции.

Достоинства. Деревянные строительные конструкции являются надежными, легкими и долговечными. На основе клееных деревянных конструкций сооружаются здания с покрытиями как малых, так и больших пролетов.

Древесина — мало твердый материал и легко обрабатывается, что облегчает и упрощает изготовление деревянных конструкций. Древесина стойко сопротивляется разрушительному воздействию слабых химических агрессивных сред, и поэтому деревянные конструкции успешно эксплуатируются в зданиях химической промышленности, где быстро разрушаются металлические конструкции. Древесина стойко выдерживает ударные и циклические нагрузки, и поэтому деревянные конструкции достаточно стойки в мостах и при землетрясениях.

Древесина надежно склеивается водостойкими синтетическими клеями. Благодаря этому изготовляются клеедеревянные элементы крупных сечений, больших длин,

Из конструкционных пластмасс можно создавать ограждающие конструкции общественных и производственных зданий. Они являются очень легкими и могут быть прозрачными. Эти конструкции водостойки и не подвержены опасности загнивания.

Источник https://megalektsii.ru/s69609t3.html

Источник https://studfile.net/preview/9348095/page:2/

Источник https://mydocx.ru/11-12839.html

Previous post Как определить и снять порчу на разлад и развод семьи?
Next post Ипотека с материнским капиталом в Казани