3.2 Теплофизические свойства

 

3.2 Теплофизические свойства

Отношение материала к постоянному или переменному тепловому воздействию характеризуется его теплопроводностью, теплоёмкостью, термической стойкостью, огнестойкостью, огнеупорностью и др.

Теплопроводность λ ()– способность материала передавать теплоту сквозь свою толщу от одной своей поверхности к другой в случае, если температура этих поверхностей разная. Теплопроводность материала характеризуется количеством теплоты (Дж), которое способен передать материал через 1 м² поверхности при толщине 1 м и разности температур на поверхностях 1 ºС в течение 1 с.

Теплопроводность твёрдого вещества зависит от его химического состава и молекулярного строения, но во всех случаях она во много раз превышает теплопроводность воздуха – 0,024 . Поэтому чем больше в материале пор, т.е. чем больше в нём воздуха, тем ниже будет его теплопроводность.

Таблица 3.1. Теплопроводность некоторых

Строительных материалов

Теплопроводность,

Кирпич керамический сплошной

Вода (для сравнения)

Так как средняя плотность материала, так же как и теплопроводность, обратно пропорциональна пористости, то она может служить косвенной характеристикой теплопроводности материала и использоваться в качестве марки материала по теплопроводности.

Для некоторых групп материалов установлена определённая связь между теплопроводностью и относительной плотностью d (формула В.П. Некрасова):

λ = 1,16-0,16.(3.2.1)

Теплоёмкость С () – свойство материала аккумулировать теплоту при нагревании. Показателем теплоёмкости служитудельная теплоёмкость, равная количеству теплоты, необходимой для нагревания единицы массы материала на 1ºС. Строительные материалы имеют теплоёмкость меньше, чем вода, которая обладает наибольшей теплоёмкостью 4,2 .

Температуропроводность а (м²/с) свойство материала, характеризующее скорость распространение температуры под действием теплового потока в нестационарных температурных условиях, например, при пожаре. Температуропроводность прямо пропорциональна теплопроводности λ и обратно пропорциональна теплоёмкости материала C и его плотности ρm:

а = .(3.2.2)

Тепловое расширение – свойство материала расширяться при нагревании и сжиматься при охлаждении – характеризуется температурными коэффициентами объёмного и линейного расширения.

Читать статью  Статья 24. Способы определения поставщиков (подрядчиков, исполнителей)

Коэффициент линейного температурного расширения (КТЛР) характеризует удлинение материала при нагревании его на 1ºС. Коэффициенты линейного температурного расширения у разных материалов значительно отличаются (см. табл. 3.2).

Термическая стойкость – способность материала выдерживать чередование (циклы) резких тепловых изменений. Это свойство в значительной степени зависит от однородности материала и коэффициента теплового расширения составляющих его веществ. Чем меньше КЛТР и выше однородность материала, тем выше его термическая стойкость.

Коэффициенты линейного расширения строительных материалов

Коэффициенты температурного (линейного) расширения строительных материалов

В таблице представлены значения коэффициента линейного расширения строительных материалов (КТЛР) и некоторых металлов при температуре до 100°С. Размерность коэффициента расширения в таблице — м/(м·°С) или 1/град (К -1 ).

В таблице рассмотрены: алюминий Al, медь Cu, сталь, гранит, базальт, кварцит, песчаник, известняк, стеновой кирпич, клинкерный кирпич, силикатный кирпич, легкобетонные камни, газобетонные блоки, бетон, железобетон, цементный раствор, известковый раствор, сложные штукатурки, дерево, параллельно волокнам, стекло.

Из указанных строительных материалов наиболее низким коэффициентом теплового линейного расширения обладает клинкерный кирпич (его КТЛР равен 3,5·10 -6 1/град), а также древесина, штукатурки, стеновой кирпич и базальт. Следует отметить, что высокий коэффициент теплового расширения свойственен металлам таким, как алюминий, медь или сталь. Например, коэффициент линейного расширения алюминия равен 24·10 -6 1/град, что в 2 раза больше, чем у стали.

Коэффициент теплового линейного расширения показывает на сколько (относительно размера тела) удлинится материал при увеличении его температуры на 1 градус.

Чтобы вычислить увеличение линейных размеров материала за счет теплового расширения, необходимо умножить значение температурного коэффициента линейного расширения на линейный размер материала и на разность температур в градусах Цельсия или Кельвина. Например, стеновой кирпич (КТЛР= 0,000006 град -1 ) длиной 240 мм при нагревании на 100 градусов удлинится на 0,144 мм.

Коэффициенты линейного расширения строительных материалов - таблица

По значениям коэффициентов теплового расширения в таблице видно, что указанные строительные материалы и металлы имеют положительный коэффициент линейного расширения, то есть увеличивают свои размеры (расширяются) при нагревании.

Читать статью  Определение сметной стоимости материальных ресурсов

Онлайн расчет температурного линейного расширения материалов, металлов, камней, пластиков

Если данный калькулятор был для Вас полезным, пожалуйста нажмите на одну или несколько социальных кнопочек. Благодарим за Ваш большой вклад в поддержку нашего проекта. Желаем Вам крепкого здоровья, счастья, успехов в профессиональной деятельности и дальнейшего процветания Вашего бизнеса. Огромное спасибо.

Больше интересного

В этой статье мы поговорим об таком замечательном изобретении как веранда.

В этой статье мы поговорим об таком замечательном изобретении как веранда.

Двери межкомнатные на колесиках, их достоинства и главное, что нужно о них знать.

Двери межкомнатные на колесиках, их достоинства и главное, что нужно о них знать.

Что такое теплый пол и чем он хорош, его достоинства и недостатки.

Что такое теплый пол и чем он хорош, его достоинства и недостатки.

Расчет температурного линейного расширения

Так же, как и здание после строительства может дать «усадку», некоторые материалы, напротив, со временем увеличиваются или удлиняются. Это явление в физике называется тепловым расширением, потому что возникает оно по мере того, как на твердое тело воздействует высокая температура. Оно становится причиной увеличения площади, поэтому фактор расширения необходимо принимать во внимание при строительстве автомагистралей и зданий.

К примеру, при возведении дома с железобетонными элементами в климатических условиях, близким к тропическим или южным, строители могут не учесть вероятность линейного расширения. Впоследствии увеличенные металлические конструкции могут привести к повреждению других механизмов и преждевременному разрушению всей конструкции.

Подобный пример можно привести и при строительстве железнодорожных рельс. Нагреваясь под прямыми лучами солнечного света, молекулы металла расширяются и удлиняются. В холодное время года рельсы напротив, укорачиваются. Хотя это сложно заметить невооруженным взглядом, с целью безопасности нужно учитывать это при строительстве с применением не только металла, но и камня, даже пластика.

Как определить температурное линейное расширение

Чтобы избежать негативных последствий расширения материалов, используются специальные термометры. Они чувствительны к малейшим изменениям температуры. Но лучше предусмотреть возможные изменения и перестраховаться еще на стадии планирования производства. Для этого разработан онлайн-калькулятор, который моментально демонстрирует:

  • коэффициент линейного теплового расширения;
  • удлинение по осям Х, Y и Z;
  • величину, на которую удлиняется материал при заданной температуре.
Читать статью  ТОП-9: Лучшие интернет-магазины строительных материалов Актуальный рейтинг

Все, что нужно сделать для этого – выбрать из выпадающего списка нужный материал, выбрать его параметры: толщину, дину и ширину. Если нужно конкретно узнать его состояние при той или иной температуре, можете выбрать и эту функцию на сайте. Отметим, расчеты проводятся относительно начальной температуры материала 0°C. Ответы выдаются на анализе коэффициентов линейного теплового расширения, и расчетам, которые уже проведены и запрограммированы на сайте. Система реагирует на изменения и самостоятельно выполняет подсчет.

Какие материалы чаще всего подвергаются расширению

Прежде всего, это – металлы: алюминий, купрум, медь. Среди камней можно отметить гранит базальт, кварцит и даже кирпич. Аналогично на высокие температуры реагируют дерево, сложные штукатурки и стекло. Из вышеперечисленных материалов наименьший коэффициент теплового расширения имеют:

  • клинкерный и стеновой кирпич;
  • дерево;
  • штукатурка;
  • базальт;
  • стеновой кирпич.

Для сравнения, наибольший показатель – у алюминия, стали и меди. К примеру, КТЛР алюминия составляет 24•10-6 1/град, что в 2 раза больше, чем у стали. Поэтому монтаж трубопровода невозможен без предварительных расчетов, особенно если планируется использовать алюминиевые трубы для горячего водоснабжения или отопления. Изменение длины трубопровода при перепадах температуры определяется по формуле

  • а – КТЛР материала, из которого изготовлена труба или другое изделие;
  • tmax – наибольшая температура, которой достигает теплоноситель;
  • tс — температура окружающей среды на момент установки конструкции;
  • l — длина трубопровода.

Также есть специально составленные таблицы значений среднего температурного коэффициента линейного расширения различных материалов. Но прибегать к ним и сложным расчетам не обязательно, если под рукой есть интернет и безошибочное решение можно получить с помощью калькулятора за считанные минуты.

Источник https://studfile.net/preview/550822/page:4/

Источник http://thermalinfo.ru/svojstva-materialov/strojmaterialy/koeffitsienty-temperaturnogo-rasshireniya-ktr-stroitelnyh-materialov

Источник https://webcala.net/kalkulator/materialov/koeficient-lineynoye-rashireniye-materialov/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Previous post Садовый инвентарь и инструменты
Next post Топ-6 программ для раздачи Wi-Fi при работе с Windows 7/10/11 (делимся интернетом просто! )