Основные свойства строительных материалов

 

Взаимосвязь структуры и свойств строительных материалов (примеры)

Так как свойства материала являются производными его структуры, химических связей и состава, то они взаимосвязаны друг с другом и находятся в равновесии. Известно, что при изменении одного какого-либо свойства под действием каких-то факторов, в большей или меньшей степени изменяются и другие свойства. В строительном материаловедении хорошо известны такие зависимости как: плотность — теплопроводность, плотность — прочность, теплопроводность — электропроводность, упругость — пластичность и другие.

Свойства материалов в большей мере связаны с особенностями их строения и со свойствами тех веществ, из которых данный материал состоит. В свою очередь, строение материала зависит: для природных материалов — от их происхождения и условий образования, для искусственных — от технологии производства и обработки материала.

Каждый строительный материал характеризуется химическим, минеральным и фазовым составами.

В зависимости от химического состава все материалы делят:

  • · на органические (древесные, битум, пластмассы и т. п.),
  • · минеральные (бетон, цемент, кирпич, природный камень и т. п.)
  • · металлы (сталь, чугун, алюминий).

Каждая из этих групп имеет свои особенности. Так, все органические материалы горючи, а минеральные — огнестойки; металлы хорошо проводят электричество и теплоту. Химический состав позволяет судить и о других технических характеристиках (биостойкости, прочности и т. д.). Химический состав некоторых материалов (неорганические вяжущие вещества, каменные материалы, стекло) часто выражают количеством содержащихся в них оксидов.

Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Зная минералы и их количество в материале, можно судить о свойствах материала. Например, способность неорганических вяжущих веществ твердеть и сохранять прочность в водной среде, обусловлена присутствием в них минералов силикатов, алюминатов, ферритов кальция, причем при большом их количестве ускоряется процесс твердения и повышается прочность цементного камня.

При характеристике фазового состава материала выделяют: твердые вещества, образующие стенки пор («каркас» материала), и поры, заполненные воздухом и водой. Фазовый состав материала и фазовые переходы воды в его порах оказывают влияние на все свойства и поведение материала при эксплуатации.

Не меньшее влияние на свойства материала оказывают его макро- и микроструктура и внутреннее строение веществ, составляющих материал, на молекулярно-ионном уровне.

Микроструктура материала — строение, видимое невооруженным глазом или при небольшом увеличении под микроскопом. Внутреннее строение веществ изучают методами рентгеноструктурного анализа, электронной микроскопии и т. д.

Во многом свойства материала определяют количество, размер и характер пор. Например, пористое стекло (пеностекло), в отличие от оконного стекла, непрозрачное и очень легкое.

Форма и размер частиц твердого вещества также влияют на свойства материала. Так, если из расплава обычного стекла вытянуть тонкие волокна, то получится легкая и мягкая стеклянная вата.

В зависимости от формы и размера частиц и их строения макроструктура твердых строительных материалов может быть:

  • · зернистой (рыхлозернистой или конгломератной);
  • · ячеистой (мелкопористой);
  • · волокнистой;
  • · слоистой.

Рыхлозернистые материалы состоят из отдельных, не связанных одно с другим зерен (песок, гравий, порошкообразные материалы для мастичной теплоизоляции и засыпок и др.).

Конгломератное строение, когда зерна прочно соединены между собой, характерно для различных видов бетона, некоторых видов природных и керамических материалов и др.

Ячеистая (мелкопористая) структура характеризуется наличием макро- и микропор, свойственных газо- и пенобетонам, ячеистым пластмассам, некоторым керамическим материалам.

Волокнистые и слоистые материалы, у которых волокна (слои) расположены параллельно одно другому, обладают различными свойствами вдоль и поперек волокон (слоев). Это явление называется анизотропией, а материалы, обладающие такими свойствами, — анизотропными. Волокнистая структура присуща древесине, изделиям из минеральной ваты, а слоистая — рулонным, листовым, плитным материалам со слоистым наполнителем (текстолит, бумопласт и др.).

По взаимному расположению атомов и молекул материалы могут, быть кристаллическими и аморфными. Неодинаковое строение кристаллических и аморфных веществ определяет и различия в их свойствах. Аморфные вещества, обладая нерастраченной внутренней энергией кристаллизации, химически более активны, чем кристаллические такого же состава (например, аморфные формы кремнезема — пемзы, туфы, трепелы, диатомиты и кристаллический кварц).

Существенное различие между аморфными и кристаллическими веществами состоит в том, что кристаллические вещества при нагревании имеют определенную температуру плавления (при постоянном давлении), а аморфные размягчаются и постепенно переходят в жидкое состояние.

Прочность аморфных веществ, как правило, ниже кристаллических, поэтому для получения материалов повышенной прочности специально проводят кристаллизацию, например стекол при получении стеклокристаллических материалов — ситаллов и шлакоситаллов.

Неодинаковые свойства могут наблюдаться у кристаллических материалов одного и того же состава, если они формируются в разных кристаллических формах, называемых модификациями (явление полиморфизма). Например, полиморфные превращения кварца сопровождаются изменением объема. Изменением свойств материала путем изменения кристаллической решетки пользуются при термической обработке металлов (закалке или отпуске).

Основные свойства строительных материалов

Единой, всеобъемлющей классификации строительных материалов не существует. Была сделана попытка составить по аналогии с периодической таблицей химических элементов Менделеева периодическую таблицу строительных материалов, которая не увенчалась успехом.

В настоящее время строительные материалы чаще всего классифицируются по назначению, исходя из условий работы материала в сооружении. Так, материалы делятся на две группы: конструкционные и специального назначения.

К конструкционным материалам, которые воспринимают различные нагрузки (от собственной массы, от массы установленного оборудования, снеговые, ветровые и т.д.) и используются для несущих конструкций, относятся:

1) природные каменные;

3) искусственные каменные, получаемые:

  • а) омоноличиванием с помощью вяжущих веществ (бетоны, растворы);
  • б) спеканием (керамические материалы);
  • в) плавлением (стекло, ситаллы);

4) металлы (чугун, сталь, алюминий, сплавы);

7) композиционные (асбестоцемент, стеклопластики, бетонополимеры).

К материалам специального назначения, название которых говорит об их функции, относятся:

  1. теплоизоляционные;
  2. акустические;
  3. гидроизоляционные, кровельные и герметизирующие;
  4. отделочные;
  5. химстойкие;
  6. антикоррозийные;
  7. огнеупорные;
  8. материалы для защиты от радиационных воздействий и др.

Каждый материал обладает комплексом разнообразных свойств.

Свойство — способность материала определенным образом реагировать на отдельный или чаще всего действующий в совокупности с другими внешний или внутренний фактор.

Связь состава, структуры, строения и свойств материалов

Свойства материалов взаимосвязаны с их составом, структурой и внутренним строением.

Если для природных материалов (каменные материалы, древесина) возможно только частичное изменение их свойств, например, пропитка древесины антисептиками, которые препятствуют гниению древесины, то при получении искусственных материалов технологию следует рассматривать с точки зрения ее влияния на строение, структуру и, как следствие, на получение материалов с заданными свойствами.

Читать статью  Название для строительной сферы

Строительные материалы характеризуются химическим, минеральным и фазовым составами.

По химическому составу материалы делятся на органические (древесина, битум, полимеры) и минеральные, т.е. неорганические (природный камень, кирпич, бетон), а также металлы (чугун, сталь, алюминий). Органические материалы горючи, а минеральные нет. Химический состав некоторых материалов иногда выражают количеством содержащихся в них оксидов. Оксиды, химически связанные между собой, образуют минералы, которые характеризуют минеральный состав материала. Варьируя содержание и количество минералов, можно получить материалы с разными свойствами (например, портландцемент, быстротвердеющий и сульфатостойкий цемент и т.д.).

Фазовый состав — это соотношение между твердым каркасом материала и порами. Фазовый состав, а также фазовые переходы воды в порах материала взаимосвязаны со всеми свойствами и поведением материала при эксплуатации.

Свойства материала взаимосвязаны с его структурой. При изучении структуры материала различают макро- и микроструктуры.

Макроструктура — это строение, видимое невооруженным глазом. Микроструктура — строение, видимое под микроскопом.

Материалы могут иметь следующую макроструктуру:

  1. рыхлозернистую — состоящую из отдельных не связанных друг с другом зерен (песок, гравий, цемент);
  2. конгломератную — когда зерна прочно соединены между собой (бетон, керамические материалы);
  3. ячеистую — которая характеризуется большим количеством равномерно распределенных по объему материала макрои микропор (ячеистые бетоны, пеностекло);
  4. волокнистую (древесина, минеральная вата);
  5. слоистую (фанера, текстолит).

Волокнистой и слоистой структурам присуща анизотропия, т.е. различие свойств в различных направлениях (например, прочность вдоль и поперек волокон).

Внутреннее строение материалов изучают методами рентгеноструктурного анализа, электронной микроскопии и т.д. По взаимному расположению атомов и молекул материалы могут быть кристаллическими и аморфными. Неодинаковое строение кристаллических и аморфных материалов определяет и различие их свойств. Материалы аморфного строения химически более активны, имеют меньшие прочность и теплопроводность, чем кристаллические такого же состава.

Физические свойства

Истинная плотность — это масса единицы объема материала в абсолютно плотном (т.е. без пор) состоянии:

где m — масса материала; Va — объем материала без пор.

Истинная плотность — физическая константа, которая не может меняться без изменения химического состава или внутреннего строения материала.

Средняя плотность — это масса единицы объема материала в естественном (т.е. вместе с порами) состоянии:

где m — масса образца материала; Ve — объем образца материала.

Средняя плотность строительных материалов может меняться

в широких пределах: от 10…20 кг/м 3 для самых легких пенопластов до 7850 кг/м 3 для стали. Даже один вид строительных материалов в зависимости от технологии получения, структуры и назначения имеет разную среднюю плотность. Например: кирпич полнотелый — 1600…1900 кг/м 3 , тяжелый бетон — 1800…2500 кг/м 3 , пенопласты — 10…200 кг/м 3 и т.д.

В последующем средняя плотность будет именоваться просто плотность.

Насыпная плотность — масса единицы объема материала в насыпном состоянии. Определяется для сыпучих материалов (цемента, песка, щебня и т.п.).

Абсолютное большинство материалов имеют в своем объеме поры, поэтому у них истинная плотность всегда больше средней. Степень заполнения объема материала материалом называется коэффициентом плотности, который рассчитывается по формуле

Степень заполнения объема материала порами называется пористостью. В сумме Kпл и пористость составляют 1, или 100 %.

Пористость определяется по формуле

и может колебаться в широких пределах: от 0,2…0,8 % у гранита и свыше 90 % у пенопластов. Размеры пор могут быть от миллионных долей до нескольких миллиметров. По характеру поры могут быть сообщающимися или замкнутыми.

Пористость — важнейшая характеристика материала, связанная с рядом других свойств. От величины пористости, характера и размера пор зависят средняя плотность, прочность, теплопроводность, морозостойкость, долговечность, гигроскопичность и водопоглощение, водопроницаемость и др.

Гидрофизические свойства

Свойства, связанные со статическим или циклическим воздействием воды или водяного пара на материал, называются гидрофизическими свойствами материалов.

Гигроскопичность — способность материала поглощать и конденсировать водяные пары из воздуха. Зависит от величины пористости, характера и размера пор, а также от параметров окружающей среды (температуры и относительной влажности воздуха). В самом общем случае — чем больше пористость, тем выше гигроскопичность.

Капиллярное всасывание — способность материала при непосредственном контакте с водой поднимать ее на определенную высоту по капиллярным порам, которые имеют размер от 1000Å до 10 мкм.

Влажность — это относительное содержание влаги в материале:

где mc — масса материала, высушенного до постоянной массы, г;

mвл — масса влажного материала, г.

Все материалы имеют ту или иную влажность, которая зависит от условий эксплуатации, величины пористости, характера и размера пор материала. Влажность влияет на ряд свойств материалов (плотность, прочность, теплопроводность и др.).

Влажностные деформации — увеличение линейных размеров и объема материала при его увлажнении (набухание) или уменьшение — при высыхании (усушка). Зависят от строения материала.

Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (древесина 30…100 мм/м; ячеистый бетон 1…3 мм/м), материалы с маленькой пористостью — незначительной усадкой (гранит 0,02…0,06 мм/м).

Водопоглощение — способность материала поглощать и удерживать воду при непосредственном контакте с ней. Количество воды, которое поглотил образец, отнесенное к его массе в сухом состоянии, называют водопоглощением по массе Wm, а отнесенное к его объему — водопоглощением по объему Wo:

где mв — масса материала, насыщенного до постоянной массы, г; mс — масса сухого материала, г; Ve — объем материала в естественном состоянии; ρв — плотность воды, г/см 3 .

Водопоглощение зависит от величины пористости, характера и размеров пор.

Между этими водопоглощениями существует взаимосвязь:

Последняя формула удобна для определения Wo в случае затруднения определения объема материала, когда он имеет неправильную геометрическую форму.

Коэффициент насыщения — степень заполнения пор материала водой:

Этот коэффициент позволяет оценить структуру материала. Уменьшение Kн при постоянной величине пористости свидетельствует о сокращении открытой пористости.

Водостойкость — способность материала сохранять прочность при увлажнении. Характеризуется коэффициентом размягчения

где Rв и Rc — пределы прочности при сжатии соответственно водонасыщенного и сухого материала.

Материалы, имеющие Kр > 0,8, считаются водостойкими и их разрешается применять в сырых условиях эксплуатации, материалы с Kр < 0,8 — неводостойкими.

Воздухостойкость — способность материала выдерживать многократные циклические воздействия увлажнения и высушивания без заметных деформаций и потери механической прочности.

Водопроницаемость — способность материала пропускать воду под давлением. В строительстве чаще необходимо противоположное свойство — водонепроницаемость, которая характеризуется или периодом времени, по истечении которого проявляются признаки просачивания воды через материал, или величиной давления воды, при котором она не проходит через материал. Эти свойства зависят от величины пористости, характера и размера пор.

Читать статью  Теплоемкость материалов — таблица

Морозостойкость — способность материала, насыщенного водой, выдерживать многократное попеременное замораживание и оттаивание без значительных признаков разрушения и существенного снижения прочности. Это свойство взаимосвязано с долговечностью, зависит от величины пористости, характера и размера пор, начальной прочности, а также от условий эксплуатации. Характеризуется количеством циклов попеременного замораживания при температуре –15…–17 °С и оттаивания в воде при температуре +20 °С. Число циклов (марка или класс), которое должен выдерживать материал, в зависимости от его назначения, указывается в нормативных документах. Материал считается выдержавшим испытание, если после заданного количества циклов потеря массы и снижение прочности не превышают значений, указанных в нормативных документах.

Теплофизические свойства

Это группа свойств, которые характеризуют отношение материала к постоянному или периодическому тепловому воздействию. Теплоемкость — свойство материала аккумулировать теплоту при нагревании. Теплоемкость С (кДж/кг °С) характеризуется количеством тепла кДж, необходимым для нагревания 1 кг материала на 1 °С.

Вода имеет высокую теплоемкость (4,2 кДж/кг °С), строительные материалы более низкие величины: лесные материалы 2,39…2,72 кДж/кг °С, каменные 0,75…0,92 кДж/кг °С, сталь 0,48 кДж/кг °С, поэтому с увлажнением материалов их теплоемкость увеличивается.

Теплопроводность — свойство материала передавать теплоту через свою толщу от одной поверхности к другой. Теплопроводность λ (Вт/м °С) характеризуется количеством тепла, проходящим через материал площадью 1 м 2 , толщиной 1 м в течение одной секунды, при разности температур на противоположных поверхностях в 1 °С. Теплопроводность материала зависит от его химического состава, строения и структуры, степени влажности, характера и размера пор, а также от температуры, при которой происходит передача тепла. Тепловой поток проходит через «каркас» материала и поры. Каркас материала кристаллического строения более теплопроводен, чем каркас материала из того же состава, но аморфного строения. В сухом состоянии поры материала заполнены воздухом, тепло проводность которого в неподвижном состоянии значительно ниже теплопроводности любого «каркаса» и составляет всего 0,023 Вт/м °С. Поэтому малотеплопроводные материалы имеют большую (до 90…95 %) пористость. При одинаковой величине пористости мелкопористые материалы и материалы с замкнутыми порами имеют меньшую теплопроводность, чем крупнопористые и материалы с сообщающимися порами. Это связано с тем, что в крупных и сообщающихся порах усиливается перенос тепла конвекцией, т.е. движущимся воздухом, что повышает суммарную теплопроводность.

С увеличением влажности материала теплопроводность возрастает, так как вода, заполняющая поры, имеет теплопроводность 0,58 Вт/м °С, что в 25 раз выше теплопроводности воздуха. Еще в большей степени возрастает теплопроводность при замерзании воды в порах, так как теплопроводность льда составляет 2,3 Вт/м °С, что в 100 раз больше теплопроводности воздуха.

С повышением температуры теплопроводность большинства строительных материалов возрастает.

Приведем показатели теплопроводности некоторых строительных материалов, Вт/м °С: пенопласт — 0,03…0,05, минеральная вата — 0,06…0,09, древесина — 0,18…0,36, кирпич керамический полнотелый — 0,8…0,9, кирпич керамический пустотелый — 0,3…0,5, бетон тяжелый — 1,3…1,5, ячеистый бетон — 0,1…0,3, сталь — 58.

Термическая стойкость — способность материала выдерживать чередование резких тепловых изменений. Зависит от однородности материала и коэффициента линейного температурного расширения (КЛТР), который характеризует изменение линейных размеров материала при его нагревании на 1 °С. Чем меньше КЛТР и выше однородность материала, тем выше его термическая стойкость.

Огнеупорность — способность материала выдерживать длительное воздействие высокой температуры, не деформируясь и не расплавляясь. Материалы, которые выдерживают температуру свыше 1580 °С, называют огнеупорными, от 1350 до 1580 °С — тугоплавкими, ниже 1350 °С — легкоплавкими, до 1000 °С — жаропрочными. Огнестойкость — способность материала противостоять действию высоких температур и воды в условиях пожара без потери несущей способности. По отношению к действию огня материалы делятся на несгораемые (кирпич, бетон, сталь), трудносгораемые (асфальтобетон, фибролит), которые горят только при наличии источника огня, и сгораемые (древесина, битум, смолы).

Огнестойкость конструкции выражается промежутком времени в часах, в течение которого не происходит потеря несущей способности. Несгораемые материалы не всегда обладают высокой огнестойкостью: например, сталь при высоких температурах деформируется, а бетон растрескивается.

Механические свойства

Механические свойства отражают способность материала сопротивляться силовым, тепловым, усадочным или другим внутренним напряжениям.

При приложении внешних сил материал деформируется. Деформации могут быть обратимыми и необратимыми. В свою очередь обратимые деформации могут быть упругими и эластичными. Характер и величина деформаций зависят от величины нагрузки, скорости нагружения и температуры материала.

Упругость — свойство материала при воздействии нагрузки изменять свои размеры и форму и полностью восстанавливать их после снятия нагрузки.

Пластичность — свойство материала при воздействии нагрузки в значительных пределах изменять свои размеры и форму без нарушения сплошности и сохранять их после снятия нагрузки.

Хрупкость — свойство материала разрушаться под действием нагрузки без заметных пластических деформаций. Многие строительные материалы (кирпич, бетон, стекло и др.) являются хрупкими. У хрупких материалов прочность при сжатии существенно больше (в 10…20 раз) прочности при растяжении.

Прочность — свойство материала сопротивляться внутренним напряжениям, которые возникают при действии внешних нагрузок. Материал в сооружении подвергается тем или иным воздействиям, которые вызывают напряженное состояние (сжатие, растяжение, изгиб, кручение, сдвиг, скалывание и др.).

В самом общем случае напряжение

где σ — напряжение, МПа (1 кН/см 2 ≈ 10 МПа ≈ 100 кг/см 2 ); Р — нагрузка, кН; F — площадь поперечного сечения образца до испытания, см 2 .

Величина напряжения зависит от величины нагрузки. Максимального значения, при котором наступает разрушение материала, напряжения достигают при разрушающей нагрузке. Прочность характеризуется пределом прочности

Предел прочности одного и того же материала может иметь различную величину в зависимости от размера образца, его формы, скорости нагружения, а также конструкции прибора, на котором проводятся испытания, поэтому для получения объективных результатов необходимо строго соблюдать все условия испытаний, которые установлены для данного материала соответствующими нормативными документами.

Предел прочности при сжатии определяется на образцах правильной геометрической формы: кубы, призмы, цилиндры. Разрушающая нагрузка, как правило, определяется на гидравлическом прессе:

Прочность различных материалов на сжатие варьируется от 0,5 до 1000 МПа и выше. У некоторых материалов прочность на сжатие характеризует их марки или классы, т.е. качество.

Читать статью  Все о закупке материала для ремонта квартиры под ключ!

Предел прочности на растяжение определяется на образцахстержнях, образцах-призмах или «восьмерках», которые имеют переменное сечение. Разрушающая нагрузка определяется на разрывных машинах:

Возможно также определение прочности на растяжение методом раскалывания на кубах или цилиндрах.

Предел прочности на изгиб определяется на образцах-призмах:

где Р — разрушающая нагрузка, кН; l — расстояние между опорами, см; b — ширина образца, см; h — высота образца, см.

В последнее время широкое распространение получили различные неразрушающие методы испытания строительных материалов на прочность.

Ударная вязкость — свойство материала сопротивляться ударным нагрузкам.

Твердость — свойство материала сопротивляться проникновению в него другого более твердого материала.

Истираемость — свойство материала сопротивляться истирающим воздействиям.

Физико-химические свойства

Дисперсность — характеристика размеров твердых частиц или капель жидкости. Величина, характеризующая степень размельчения материала и развитости его поверхности. Характеризуется удельной поверхностью Sуд, см 2 /г.

Адгезия — прочность сцепления (прилипания) одного матери

Тиксотропия — способность пластично-вязких смесей при приложении механических воздействий нарушать свою структуру и восстанавливать ее после прекращения действия механических воздействий.

Взаимосвязь основных свойств строительных материалов

Так как свойства материала являются производными его структуры, химических связей и состава, то они взаимосвязаны друг с другом и находятся в равновесии. Известно, что при изменении одного какого-либо свойства под действием каких-то факторов, в большей или меньшей степени изменяются и другие свойства. В строительном материаловедении хорошо известны такие зависимости как: плотность — теплопроводность, плотность — прочность, теплопроводность — электропроводность, упругость — пластичность и др.

На рис. 4.1 изображена диаграмма равновесия основных свойств строительных материалов, которая показывает взаимосвязь полей напряжения, температур и химического взаимодействия и, как следствие, взаимозависимость механических, термических и физико-химических свойств строительных материалов.

Рис. 4.1. Диаграмма равновесия свойств материалов: Т – температура; М – масса; V — объем; D – диффузия; e — деформация; S – энтропия

Известно, что любой материал с определенными внутренним строением, микро- и макро-структурой и свойствами можно представить в виде системы (наподобие термодинамической), элементы которой взаимосвязаны и роль каждого элемента строго определена. Напомним, что в термодинамической системе основными элементами являются: параметры системы, функции состояния системы, производные параметров и функций системы, координаты системы, термодинамический потенциал и движущие силы системы (табл. 4.1).

Основные элементы термодинамической системы и материала как системы

Материал как система

Тепловая энергия, DQ

Рассматривая материал как систему, выразим ее координаты условно через основные физические величины: массу М, объем V и температуру Т. Тогда термодинамическим потенциалом системы будет соответственно диффузия D, деформация e и энтропия S
(см. рис. 4.1). Движущей силой процесса изменения устойчивости системы или сохранения ее равновесия для каждого поля по аналогии с термодинамической системой являются изменения концентрации DК, напряжения Ds и теплоемкости DС системы (табл. 4.1).

Химический и минералогический составы, а также внутреннее строение вещества являются производными параметров и функций системы. Микро- и макроструктура материала, характеризующиеся внутренней и поверхностной энергиями являются функцией системы. Свойства материала выполняют роль индикаторов, которые в любой период его существования характеризуют то или иное состояние системы, т.е. по аналогии с термодинамической системой, являются основными параметрами материала как системы.

В дальнейшем, рассматривая основные свойства строительных материалов во взаимосвязи со структурой, будем, по мере возможности, обращаться к схеме рис. 4.1.

Диаграмма равновесия основных свойств строительных материалов представляет собой два треугольника (внутренний и внешний), вершины которых, обозначенные кружками, соединены между собой прямыми линиями, характеризующими взаимосвязь треугольников, их вершин и самих прямых. Вершины внешнего треугольника являются координатами системы: объем V, масса М и температура Т. Вершины внутреннего треугольника являются термодинамическими потенциалами системы в виде полей напряженности, температуры и химического взаимодействия, обозначенными наиболее характерными для каждого из них процессами или состояниями: деформация e, энтропия S и диффузия D. Прямые линии характеризуют основные свойства материала как системы, взаимосвязь которых и определяет представленная диаграмма.

Внутренний треугольник e-S-D характеризует взаимосвязь полей системы, существование и уровень которых зависит от наличия и величины, соответственно, механической, тепловой и химической энергий, а внешний V–T-M определяет границы системы и взаимосвязь, соответственно, упруго-деформативных, термических и физических (физико-химических) свойств материала.

Взаимосвязь свойств на схеме легко просматривается лишь вблизи полей. Например, напряжение-деформация-упругость или массопроводность — диффузия — концентрация и.д. В пределах же всей системы эта связь менее отчетлива. Чтобы ее выявить, необходимо переходить через координаты системы. Например, взаимосвязь плотность – теплопроводность видна при прохождении условного пути (на схеме: прямые VM, МТ и ТD) через две координаты — массы М и температуры Т. Из этого следует, что эта связь более сложная, многофакторная, т.к. определяется двумя координатами и двумя полями (вспомним приведенную формулу Дебая l=r·с·а, в которой теплопроводность l рассматривается как функция плотности r, удельной теплоемкости с и температуропроводности а).

Еще более сложная зависимость между плотностью (прямая VM) и термостойкостью (прямая VT), отражающая термоупругие свойства, характерные для огнеупорных материалов. В этом случае необходимо пройти условный путь (на схеме: прямые VM, МТ, Тe, eV и VT или прямые MV, V, e, eS, SТ, ТV; возможны и другие пути) через три координаты и два, а возможно и все три поля. Из этого следует, что основная характеристика огнеупорных материалов — термостойкость, представляет собой многофакторную связь упруго-деформативных, физико-химических и термических свойств системы.

Значительно проще анализировать взаимосвязь свойств, ограничивая систему зоной, включающей только две координаты и одно поле (например треугольник МeV или VSТ и т.д., всего 9 вариантов). Если ограничить систему зоной, включающей два поля и одну координату (таких зон также 9), то в этом случае возможно анализировать взаимосвязь в большей степени процессов или состояний, чем свойств. Например, если рассматривать зону системы, в которой преобладает связь поля напряжения и температурного поля с объемом, то основным процессом или состоянием будет “тепловое напряжение”, а если эти поля связаны с температурой, то основным процессом, характеризующим эту часть системы будет “тепловое расширение”. Аналогичную взаимосвязь можно проследить и в других подобных зонах системы.

Взаимосвязь “структура — свойства” на данной диаграмме (см. рис. 4.1) не просматривается и будет рассмотрена ниже, при изучении некоторых физических, теплофизических и упруго-деформативных свойств.

Источник https://studwood.net/1077567/nedvizhimost/vzaimosvyaz_struktury_svoystv_stroitelnyh_materialov_primery

Источник https://extxe.com/4415/osnovnye-svojstva-stroitelnyh-materialov/

Источник https://3ys.ru/materialovedenie/vzaimosvyaz-osnovnykh-svojstv-stroitelnykh-materialov.html

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Previous post Что учитывать, делая пол в квартире
Next post 7 советов по обустройству игровой площадки для детей на даче