О работе ЭБУ и самостоятельной первичной диагностике (часть 4 из 6)

 

Engine Load. Отбор мощности мотора.

Стандарт лучшей рекламы . https ID список доверия и качества . Статичное размещение . Нравится — смотрите, иначе — листайте дальше . Никаких проблем .

# . mvideo.ru, Пылесосы и аксессуары.

а также беспроводные, автомобильные, для влажной уборки, с аквафильтром, без мешка, вертикальные . Роботы пылесосы, с контейнером для пыли, с пылесборником, аккумуляторные .

# . eldorado.ru, Товары для сада и ремонта, интернет-магазин N1 в России, где всегда дешево.

# . ya.cc, Детские аксессуары для детей, магазин, кружки, товары, мода, вещи и игрушки.

Детские аксессуары, купить для детей. Для велосипеда. Для волос. Для детского сада и выпускного. Игрушки. Для коляски. Для праздника. Спортивные. Для комнаты. Детфор. Цена. Для самокатов. Для кроватки и автокресла. Украшения. Косметика. Для мебели. Для кукол и кухни. Ламода. Для дачи. C фото. Detmir. Школьные принадлежности. Список. Лучшее. Машинки. Подарки. Игровой набор. Канцелярский сет. Карнавал. Комплекты. Для ванной. Что купить первокласснику. Чехол для бутылочки. Шапка для плавания.

Официальный сайт, интернет магазин товаров — работает для вас, умея ценить ваши покупки и эмоции . Очень нужно каждому свое . Садовая техника и оснастка . Спорттовары спортивные для спорта . Здоровье уход оздоровление . Косметика . Авто товары .

Параметры : Нагрузка двигателя, описание.

Несмотря на то, что я не собирался детально вдаваться в параметры так как их великое множество, и групповой обзор более емко отражает взаимозависимости . Все-таки придется сделать это для одного или нескольких параметров. Один из таких параметров — load engine.

Посмотреть, как нагрузка влияет на расход топлива — можно в калькуляторе, по ссылке : calc toplivo rashod LPH .

Параметр Load отражает как блок управления понимает / рассчитывает загрузку мотора . Идеально вращающийся motor, с идеальными компонентами и условиями окружающей среды, после самоадаптации — принимает некоторые значения коррекции, и с их учетом работает устойчиво и равномерно . Любое нарушение сбалансированной системы с целью понижения оборотов / отбора мощности будет расценено как увеличение напряжения противодействия на движок . Соответствующая реакция ЭБУ — адекватно отреагировать на увеличение отягощения — компенсацией . А, чем? — увеличением откорректированной подачи топливо / воздушной смеси для восстановления утраченного баланса системы.

Таким образом, любое воздействие на двигло расценивается как увеличение степени количества работы :
— включил фары .
— повернул руль .
— включил скорость / АКП .
— изменил окружающую температуру .
— изменил давление .
— нажал на газ .
— прикрыл рукой вход воздушного фильтра .
— прикрыл рукой глушитель .
— облил рядник холодной водой .
— пережал руками шланг подачи / обратки топлива .

Да мало-ли какое еще воздействие может испытать V-образник . Вопрос в другом . Сколько параметров переменных будет пересчитано / перезаписано, и каковы будут изменения в пределах допустимого диапазона регулировки . И взаимо / регулировки / согласования параметров .

Parameter : Load Engine — причины неисправности.

— Значение объема воздуха, топлива, положения педали газа .
— Чрезмерное бремя тяжести потребителей на двигатель .
— Механическая неисправность тормозной системы ; трансмиссии ; engine .
— Неисправность блока управления .

Диагностика, тестирование.

— Расчетное значение меры противоборства мотора в % .
— Состояние противостояния motor по датчику расхода воздуха .
— Нагрузка движка по датчику положения дросселя .
— Load двигла по времени впрыска инжекторов .

Дополнительная информация.

При разработке систем управления впрыском автомобилей могут применяться разные методы расчета напряжения противодействия рядника.

Отягощение V-образника, % = ( Output Torque / Max Output Torque For This RPM ) * 100% .
Скорее всего Max Output Torque For This RPM это табличный элемент прошивки блока управления который простым людям / простыми средствами — никогда не узнать . Вопрос, как узнать лояльность степени количества работы, если опорное значение обычно не указывается, особенно по OBD протоколу.

Бремя тяжести антисопротивления двигателя, ms = по времени впрыска . Это уже лучше, так как многие производители указывают заданное время впрыска . В этом случае есть возможность посчитать .

Мера противоборства engine, g/s, kg/h по поступлению воздуха в цилиндры . Это тоже относительно понятный метод определения состояния противостояния . Известно : объем и количество цилиндров, коэффициент впускного тракта, количество поступившего воздуха . Количество максимального воздуха для цилиндра тоже может быть посчитано . Соответственно — может быть посчитана и нагрузка мотора .

Так как в системах управления с дроссельной заслонкой — дроссель регулирует подачу воздуха — дроссель также косвенно является показателем load на motor . Закрытый дроссель — минимальная загрузка на движок, полностью открытый дроссель — максимальное напряжение противодействия на двигло . При этом следует учитывать, что положение педали газа и положение дросселя — это может быть — не одно и тоже .

В диагностических целях нас больше интересует не собственно отягощение рядника, а возможность по степени количества работы V-образника определить источник неисправности автомобиля. Различные механические, электронные и корректировочные данные могут влиять на показания бремени тяжести антисопротивления, сбивая с толку .

B/F SCHDL, Basic Fuel Scheduling, планирование (регулировка, адаптация) основного количества топлива. Параметр указывает меру противоборства на двигатель по скорректированному времени впрыска топлива. Состояние противостояния увеличивает B/F SCHDL, снижение нагрузки уменьшает параметр .

Разновидности Load.

Load — это вакуум / то, есть атмосферное давление / в коллекторе без обогащения . По мере открытия дросселя до 100% достигается точка, когда ЭБУ начинает подачу топлива для дополнительной мощности, то есть обогащения . Без учета обогащения дросселя — Load прямо пропорционально вакууму коллектора . Вышесказанное справедливо для датчика MAP за дросселем — реальное количество воздуха в цилиндры / разница с атмосферой .

Возможные значения Absolute Load :
Aspirate / Atm = 0% . 95% .
Turbo = 0% . 400% .

Calculate Load, %, текущая мощность / крутящий момент по отношению к максимальному .

Старое золотое правило экономичности : 600 — 60 — 6 ( еще одно дьявольское число . )
600 F = 315 гр. С — температура выхлопа .
60 mph = 96 км/ч — скорость движения .
6 psi = 41 kPa — давление впускного коллектора .

Load, как расчетное значение карты впрыска подачи топлива, текущий крутящий момент / максимальный крутящий момент , заданный для текущих оборотов . Проблема в том, что для разных оборотов может быть задан разный максимальный крутящий момент .

Performance Curve — кривые / графики производительности, от параметра Load : .
Вертикаль графика (x) — всегда Load / по горизонтали (y) — различные параметры .
/ RPM — оценка загрузки, высокая степень противодействия при низких оборотах указывает перегрузку (для текущей расчетной мощности / при заданных оборотах) .
/ Average Effective Pressure — оценка контроля, должны быть пропорционально / соответственно, иначе ошибка расчета / контроля .
/ Max. Pressure — оценка состояния системы впрыска / время впрыска / компрессия .
/ Compression — оценка / состояние ЦПГ / ГРМ .
/ Turbo — оценка / состояние системы турбонаддува .
/ ( Turbo.IN / Turbo.OUT ) — энтальпия, энергия, доступная для преобразования в теплоту в турбонагнетателе . ( ! ) . Показатель эффективности турбонаддува . Избыток температуры выхода указывает на загрязнение турбо, более низкое давление турбо, высокая температура выхлопных газов .
Примечание : зачем нужно знать температуру турбо, если есть тест давления турбо? Температура указывает работоспособность турбонагнетателя, давление указывает, как engine потребляет давление .
/ Temp.Exh — оценка : горение, впрыск, фазы, компрессия, высокая температура при бедной смеси .
/ λ — инженерная оценка, по мере увеличения мощности избыток воздуха падает . Применяется для контроля турбонаддува и снижения токсичности .

© интернет . диагностика легковых автомобилей и грузовиков . народное пособие .

© internet . car & truck diagnostics . people’s allowance .

Смотреть список всех страниц, раздел ismi .

techstop-ekb.ru QR Code Link, ссылка, сканировать и прочитать куар код кюар онлайн на русском .

Ссылки на самые популярные страницы интернет сайта, случайные и бесплатные прямые ссылки онлайн .

Звук микрофонной линии звуковой карты, перена . Решение проблем с микрофонным входом звуковой карты. Линейный выход. Перенаправления звука .

А-331 прогноз погоды дорогой на трассе по мар . Погода в городе Тулун, Братск, Усть-Кут, Мирный, Нюрба, Вилюйск, Якутск по А 331, метео об .

Список сети — сколько компаний США против тре . Список сеть американская компания услуги корпорация США, connector блокировка. Использоват .

Р-256 прогноз погоды дорогой на трассе по мар . Погода в городе Новосибирск, Бердск, Искитим, Барнаул, Бийск, Горно-Алтайск, Улан-Батор по .

М-5 прогноз погоды дорогой на трассе по маршр . Погода в городе Москва, Рязань, Пенза, Самара, Оренбург, Уфа, Челябинск, Екатеринбург по М .

2016-11-08 . все будет хорошо почему-то, максимально все самое лучшее .

. Самодельное устройство для проверки ротора.

Самодельное устройство для проверки ротора / якоря . Измерение исправности обмоток .

2020-11-09 . доканал новости, новости ври .

Лучший рецепт приготовления костлявой речной рыбы . Садо / мазохистские наклонности обсасывать каждую косточку — больше не нужны . Как оказалось — приготовить речную рыбу без костей — это легко, просто и пригодно в пищу, начиная с двух / летнего возраста . Просто, многие рыбаки — не умеют ее правильно готовить .

Читать статью  Моем двигатель — пошаговая инструкция и самые грубые ошибки

2022-02-03 . очень длинно, все знать хочу . Для эксперимента передачи SSTV c ISS на частоте 437.800 , модуляция MSK без коррекции ошибок, для декодирования изображения размером 320 x 240 пикселей рекомендуется программное обеспечение KG-STV, которое можно скачать / загрузить по адресу .

# . amsat-nl.org, Скачать программу KG-STV для SSTV ISS спутникового телевидения.

Быстро и просто вкусно, а в целом — относительно аскетично. © 2022 ТехСтоп Екатеринбург.

О работе ЭБУ и самостоятельной первичной диагностике (часть 4 из 6)

1) Обороты двигателя.
Польза: Кроме общей информации этот параметр позволяет нам выявлять «плавающие» обороты ХХ или неожиданно возросшие обороты ХХ.
У меня на прогретой машине разброс составляет не более +-10 об/мин.
Также можно посмотреть разницу между тахометром и реальностью. Тахометр может иметь достаточно большую погрешность на высоких оборотах (вплоть до +-250 об/мин при 5000).
Также этот параметр позволит поймать мертвый ДПКВ. Если вдруг вы пытаетесь завести автомобиль, стартер бодро крутит, а машина даже не делает попыток завестись – посмотрите, есть ли рост оборотов при прокрутке стартером? Если нет, то либо ДПКВ мертв, либо обрыв цепи ДПКВ.

2) Угол опережения зажигания (УОЗ).
Польза: Позволяет делать косвенные выводы о состоянии системы зажигания в первом цилиндре.
На ХХ на прогретом автомобиле скачет. По мурзилке на ХХ должен быть 9+-5.
Если вы повышаете обороты, то на графике УОЗ будет возрастать. Если с ростом оборотов у вас вдруг появляются провалы (за исключением момента, когда вы только что нажали на газ), это означает, что есть проблемы с воспламенением смеси, возможны пропуски зажигания.

3) Температура ОЖ (ДТОЖ). Она и в Африке температура 🙂
Если у вас вышел из строя ДТОЖ и все время занижает показания, то у вас может быть постоянное обогащение смеси и как результат – повышенный расход.
Польза: по ней в целом можно следить за моментом открытия термостата, удобно зимой использовать этот параметр, чтобы знать до какого уровня греть. У меня например, стрелка на приборной панели доходит до самого первого деления только при tОЖ=60 С. А я обычно грею машину до 40-45 градусов, а потом аккуратно еду. Обороты свыше 3000 даю только когда tОЖ достигает 80С. Но это все личное дело каждого 🙂
А еще при низкой tОЖ ЭБУ увеличивает степень обогащения смеси. Какая именно температура считается низкой – я не знаю 🙁
Кстати, есть небольшая идея увеличения мощности в ущерб расходу: в разрыв ДТОЖ впаять резистор и переключатель какой. Чтобы в одном положении ДТОЖ показывал все как есть сейчас, а в другом – занижал значения, что привело бы к обогащению смеси. Можно даже сделать три варианта:
-как есть
-занижение показаний (для обогащения смеси)
-завышение показаний (для того, чтобы ЭБУ перестал обогащать смесь на холодном двигателе). Но это так, фантазии 🙂

Чуть позже подумал и решил, что так делать не надо. А то, занижая температуру ОЖ вы можете проморгать момент, когда ваш двигатель закипит. Так что лучше не трогайте этот датчик 🙂

4) Давление во впускном коллекторе. Используется для расчета количества воздуха, поступающего в двигатель.
На ХХ на прогретом автомобиле нормальное значение 29-30 кпа (при включении потребителей, кондиционера – может быть выше).
Если сильно отличается – где-то у вас проблема. Плюс на ХХ давление не должно скакать. Оно конечно может быть пограничным и совершать небольшие скачки (что-то вроде 29.9-30.1, а прога будет показывать вам 29-30), но если там идет 29-33-28-35, а вы при этом стоите на месте – у вас где-то явные проблемы.

5) Температура воздуха на впуске (ДТВ). Вот это интересный параметр. Исходя из температуры и давления во впускном коллекторе ЭБУ считает количество поступающего воздуха. Зачем нужна температура? Чтобы учесть коэффициент температурного расширения воздуха, потому при определении количества смеси бензина и воздуха, ЭБУ важен не объем воздуха, а его масса.
И тут мы сталкиваемся с конструктивной засадой: датчик температуры воздуха объединен с ДАД и находится в очень «обогреваемом» месте. Поэтому зимой при -10 на прогретой и поработавшей машине можно наблюдать показания этого датчика +30 градусов. Фактически нагревается (от двигателя) сам датчик и сообщает мозгам уже не температуру воздуха, а скорей температуру корпуса впускного коллектора 🙁 Мозги думают, что воздуха поступило меньше (чем есть на самом деле) и в итоге плюют в цилиндры меньше бензина. Как результат – бедная смесь. Особенно заметно это летом – показания могут быть и +70С при температуре воздуха +30.
На elantra-club.ru были предложены такие мероприятия как вынос ДТВ отдельно куда-нибудь в начало впускного тракта, либо вообще воткнуть резистор, который бы всегда «занижал» показания. На Рено Логан схожая проблема и народ перемещает ДТВ в другое место.

6) Режим работы системы топливной коррекции. Может принимать два значения: closed loop и open loop.
Может принимать такие значения:
— Open loop due to insufficient engine temperature
— Closed loop, using oxygen sensor feedback to determine fuel mix
— Open loop due to engine load OR fuel cut due to deceleration
— Open loop due to system failure
— Closed loop, using at least one oxygen sensor but there is a fault in the feedback system
Closed loop, using oxygen sensor feedback to determine fuel mix (замкнутый круг) означает, что для приготовления смеси используются данные ДК1, т.е. при приготовлении следующей порции смеси ЭБУ ориентируется на то, что получилось в прошлый раз.
Closed loop, using at least one oxygen sensor but there is a fault in the feedback system — тоже самое, но уведомляется о том, что есть некая ошибка в системе.

Open loop означает, что для приготовления смеси вместо показаний ДК1 используются заранее заготовленные таблицы.
В частности ЭБУ переходит в режим Open loop due to engine load OR fuel cut due to deceleration при сильном нажатии на газ либо при полном отпускании газа на передаче и в этом случае сигнализирует о том, что подача топлива была полностью прекращена.
Open loop due to system failure означает, что система не может перейти в режим Closed loop из-за какой-то ошибки.

Многие ошибочно считают, что переход системы в Closed loop как-то связан с температурой ОЖ. Это абсолютно не так. Переход в Closed loop связан только с отклонением напряжения на ДК1 от опорного напряжения, что в свою очередь зависит от прогрева ДК1 с помощью нагревательного элемента. Переход в closed loop должен происходить быстро, несколько десятков секунд после запуска автомобиля.
Польза: если ваш двигатель не переходит в режим Closed loop, то у вас проблемы с ДК1 (возможно проблемы с его нагревательным элементом), скорей всего у вас при этом будет неприличный расход бензина.
Если ваш двигатель не переходит в open loop тогда, когда он должен это делать – у вас тоже есть какие-то проблемы 🙂
Я лично использую показания этого параметра как эдакий «экономайзер» — чтобы видеть, когда ЭБУ прекращает подачу топлива. Кстати отследить прекращение подачи топлива можно еще как минимум по двум показателям. В период прекращения подачи топлива STFT = 0.0% (стабильные) и напряжение ДК1=0.0В.

7) Расчетная нагрузка на двигатель. Это «виртуальный» параметр, который не отражает какого-то прямого показателя работы двигателя, а рассчитывается самим ЭБУ. В нашем случае – на основе ДАД+ДТВ. Расчитывается как отношение текущего воздушного потока к максимальному воздушному потоку. У некоторых автомобилей еще и учитывается атмосферное давление. Учитывается ли это у нас – я к сожалению не знаю 🙁
Теоретически: при полном открытии дросселя должен показывать 100%, но у меня почему-то не получилось достигнуть такого показателя. Да и вообще, у меня если честно, этот показатель выше 30-40% не поднимался. Сегодня попробовал сделать так: газ в пол на трейтьей, примерно на 3000 об. нагрузка дошла до ~50%. Дальше к сожалению разгоняться было некуда, пришлось тормозить 🙂 Вполне возможно, что 100% достигается при ~6000 об/мин.
Польза: Исходя из этого показателя на холостом ходу можно делать косвенные выводы о работе РХХ и потреблении бензина на холостом ходу.
Простой пример: прогретый заведенный двигатель, все педали (и тормоза!) отпущены, все электропотребители выключены. Смотрим показания нагрузки и оборотов ХХ, запоминаем.
Теперь включаем ближний свет, обогрев заднего стекла и печку на 3-ю скорость. Смотрим показатели: увеличилась нагрузка, обороты остались прежними! Почему? Потому что сопротивление вращению на шкиве генератора стало выше, потребовалось больше смеси, чтобы поддерживать заданные обороты ХХ, ЭБУ дал команду РХХ еще приоткрыть воздушный канал, соответственно с большим количеством воздуха увеличилось и время открытия форсунок.
Также если вы замените масло на менее вязкое (например 40 на 30), можете наблюдать уменьшение нагрузки на ХХ (ибо крутиться двигателю стало легче, следовательно, нужно меньше воздуха и бензина для поддержания оборотов).

Читать статью  Система охлаждения двигателя

В следующей части продолжим читать и понимать данные: топливные коррекции, датчики кислорода.

Матчасть 16. Крутящий момент и Лошадиные силы

Доброго утра мои маленькие любители сисечек, и других женских прелестей) сегодня мы с вами продолжим развивать наши извилинки, для тех кто не любит большие и маленькие молочные железы, а любит поковырять мотор, ждет приятная пища для ума)

Продают лошадиные силы, а гонку выигрывает крутящий момент.

Пойдем от истории, к практике.

Тяговые возможности моторов еще с момента рождения самоходных колясок(не ну а как еще назвать повозку Генри Форда?) принято оценивать по мощности, которая выражается в лошадиных силах. Из-за отсутствия в те далекие времена методики расчета и определения мощности до 1906-1907 годов эта характеристика двигателя имела не вполне четкое обозначение – она показывала приблизительную мощность – «от» и «до», например, от 15 до 20 л.с.(как вы понимаете, ваша машина тоже имеет приблизительную мощность, а в документах указана МАКСИМАЛЬНОЕ значение лошадиных сил. запомните это на всякий случай)

С 1907 года этот неточный показатель мощности разделили на два значения, например, 6/22 л.с. В первую цифру заложили значение налоговой ставки, а во вторую – мощность. Введенная налоговая лошадиная сила соответствовала определенному значению рабочего объема двигателя: 261,8 куб. см для четырехтактных моторов и 174,5 куб. см – для двухтактных. Появление такого способа установления налоговых ставок было обусловлено зависимостью рабочего объема двигателя от количества вырабатываемой им энергии и потребления топлива. Обозначать мощность в киловаттах (кВт), согласно международной системе измерений СИ, начали значительно позже.

На самом деле «мощность» отражает тяговые возможности двигателя лишь косвенно. С этим согласятся те, кто ездил на автомобилях-одноклассниках с двигателями приблизительно равной мощности и объема. Они наверняка заметили, что одни автомобили достаточно резвы начиная с низких оборотов, другие любят только высокие обороты, а на малых ведут себя достаточно вяло.

Много вопросов возникает у тех, кто после легковушки с 110-120-сильным бензиновым мотором пересел за руль такой же машины, но с дизельным двигателем мощностью всего 70-80 л.с. По динамике разгона, не используя спортивный режим (высокие обороты), на первый взгляд маломощный «дизель» с легкостью обойдет своего бензинового брата. В чем же здесь дело?

Мощность, которую производит двигатель, называется лошадиная сила. С точки зрения математики, одна лошадиная сила — это мощность, достаточная для поднятия груза массой в 75 кг на высоту 1 метр за 1 секунду, или мощность, достаточная для поднятия груза массой в 4500 кг на высоту 1 метр за 1 минуту. В физике мощность имеет простое определение, как скорость выполнения работы.

Мощность двигателя в л. с. измеряется при помощи динамометра. Динамометр подает нагрузку на двигатель и измеряет касательное усилие, прилагаемое коленвалом двигателя, для сопротивления данной нагрузке. Обычно это тормозная нагрузка, препятствующая вращению колес.

При этом динамометр измеряет эффективный крутящий момент двигателя. В автомобиле крутящий момент измеряется на различных скоростях вращения двигателя, или оборотах в минуту (об/мин). Для получения мощности в лошадиных силах, необходимо подставить эти два значения в формулу: крутящий момент умножить на об/мин и разделить на 5252. Общество автомобильных инженеров выделяет два стандарта определения мощности в лошадиных силах: нетто и брутто. При измерении мощности брутто, с двигателя снимаются многие нагрузки, включая управление выхлопом. Мощность нетто можно узнать при испытаниях автомобилей в выставочных залах, и именно это значение используется в рекламе и фиксируется в технической документации производителя.

Соотношения мощности и крутящего момента

1 л.с. = 745.7 Нм в секунду.

Л.с. напрямую связаны с крутящим моментом по времени. В наших условиях можно перевести время в обороты коленвала двигателя.

Таким образом, конечное соотношение будет иметь примерно вот такой вид:

Мощность = (Крут. момент * RPM) / 7120.756, где
Мощность — л.с.
Крутящий момент — Нм
RPM — обороты коленвала, об/мин

Запомните это соотношение. Имейте в виду, что динамометры меряют только крутящий момент, они не меряют мощность. Кривая мощности полностью вычисляется с помощью вышеприведенного соотношения.

Противостояние «л.с. – Нм»
логично выливается в противостояние «бензин – дизель». Серийные бензиновые двигатели развивают не самый большой крутящий момент. К тому же максимального значения он достигает только на средних оборотах (обычно 3000-4000). Зато эти моторы могут раскручиваться до 7-8 тыс. об./мин., что позволяет им развивать довольно большую мощность. Ведь согласно приведенной выше формуле, мощность численно от оборотов зависит гораздо больше, чем от момента.
По этой же причине тихоходные дизели (развивают не более 5 000 об./мин.), обладая внушительным моментом, доступным практически с самых «низов», в максимальной мощности проигрывают бензиновым.
Однако мощность важна не только максимальная. Как уже было сказано, мощность, которую развивает двигатель на оборотах ниже предельных, как правило, так же далека от максимальной заявленной. Ключом к пониманию характера любого мотора являются кривые его характеристик: мощности и момента.

Изменения кривой крутящего момента (желтая кривая) очень сильно отражаются на изменении кривой мощности (синяя кривая). И не смотря на то, что кривая момента может быть ровной или даже слегка спадать, мощность двигателя может расти из-за растущих оборотов двигателя. Конечно, такое может продолжаться лишь до тех пор, пока вдоль диапазона оборотов кривая момента не начнет спадать быстрее, чем могут вырасти обороты двигателя, что в результате сказывается на падении мощности в данном диапазоне.

Кривые крутящего момента и мощности тут находятся на одной оси. Обманный трюк дино-стендов — когда кривые момента и мощности находятся на разных осях. Потому что когда эти кривые находятся на одном графике — соотношение между ними гораздо нагляднее.

В целом, есть только два способа повысить мощность — повысить крутящий момент или повысить обороты. Сейчас многие двигатели с небольшим крутящим моментом могут добиться больших значений мощности благодаря способности сохранять уровень момента близкий к пиковому на высоких оборотах двигателя.

Теперь, когда основы вроде как изучили, перейдем к вопросу, почему максимальные значения мощности не всегда всё решают…

Пиковая мощность против Средней мощности

Максимальная мощность: 142 л.с.
Средняя мощность: 117,2 л.с.

Это пример дино-графика стоковой Хонды Integra GS-R. Многие сразу же обращают внимание на значение максимальной мощности, не утруждая себя подсчетами средней мощности. Сильный диапазон мощности определяется «зоной под кривой». Автомобиль, у которого площадь фигуры созданной кривой будет самой большой, окажется самым быстрым в реальной жизни. Многие «серьезные тюнеры» разочаровываются из-за того, что в реальной жизни авто оказывается не таким быстрым, как обещали пиковые значения максимальной мощности по графикам. Но такие люди преимущественно предпочитают мериться письками, демонстрируя распечатки дино-графиков, а не при помощи реальных соревнований. Средняя мощность крутящий момент дают лучшее представление о «зоне под кривой» и насколько хороший у автомобиля диапазон мощности.

Стоковая GS-R: Макс. мощность = 142 л.с. Средняя мощность = 117.2 л.с.
GS-R 1: Макс. мощность = 160 л.с. Средняя мощность = 112.4 л.с.
GS-R 2: Макс. мощность = 152 л.с. Средняя мощность = 125.8 л.с.

Машина, которая выдает «больше всех мощности» на самом деле выдает меньше всех мощности из-за диапазона, который еще меньше, чем у стока. В реальных условиях 160-сильная GS-R с большим трудом могла бы держаться за стоковой GS-R как только выходила бы за пределы своего узенького диапазона высокой мощности.

Максимальная мощность играет небольшую роль в общей картине мощности, которую выдает двигатель, но по какой-то причине — это любимая вещь для определения, у кого гениталии больше) Вот интересно, почему же на дино-графиках не показывают значения средней мощности двигателей, не смотря на то, что это очень просто можно посчитать? Наверно потому что это помешает продаже моднявых тюнячек, которые прибавляют «дофигища мощи», но при этом лишь в очень узеньком диапазоне оборотов…

Дальше рассмотрим графики двух GS-R, которые демонстрируют одинаковую пиковую мощность. Как же определить, какая из них быстрее, без наложения графиков?

Читать статью  Как правильно завести машину

Анализируем мощностные кривые

С какой стороны посмотреть на графики? Что делать, если у нас нет базового графика, с которым можно было бы сравнивать?

Двое разных людей достигли планки в 200 л.с. на своих GS-R. В одиночку без сравнения этих графиков между собой будет трудно понять, у кого эти 200 л.с. круче.

Фишка крепкого рабочего диапазона — достичь пика крутящего момента в сравнительно ранней точке и удержать его уровень для получения хороших уровней мощности. Это почти всегда компромисс — получить большую пиковую мощность или достичь максимума момента на низших оборотах.

Таким образом, секрет кроется в кривых крутящего момента, поскольку мы уже знаем, что мощность и крутящий момент имеют прямую пропорцию по оборотам коленвала. Если глянуть отдельно на каждый из двух графиков показанных выше, первый достигает пикового крутящего момента раньше и держит его, пока второй достигает пикового момента гораздо позже.

Попробуем наложить эти два графика один на другой и посмотрим, что получится.

Хотя было сказано, что обе машины выдают 200 л.с., GSR1 будет гораздо быстрее. Заметьте, что пиковый крутящий момент у GSR1 тоже больше.

На высоких оборотах не нужно много крутящего момента чтобы сделать много мощности, поэтому когда рассматриваются двигатели с близкими значениями пиковой мощности, можно быть уверенным, что двигатель с большим крутящим моментом будет иметь лучший рабочий диапазон.

Таким образом стало понятно, что важна не максимальная мощность, а форма кривой момента в определенных диапазонах, которая позволит получить наилучшую производительность.

Цель и средства

Наращивать мощность моторов можно по-разному. Самый «примитивный» способ – увеличение рабочего объема – слава богу, свое, похоже, отжил. Теперь в чести более продвинутые методы.
Увеличение максимального числа оборотов позволяет поднять мощность без серьезного изменения крутящего момента. Пример – BMW M5/M6, двигатель которых крутится до 8250 об./мин.
Турбо- и механический наддув резко повышают крутящий момент мотора. К примеру, двигатель 2,0 FSI (VW, Audi) выдает 150 л.с. и 200 Нм. Он же, но с турбиной (2,0 TFSI) – 200 л.с., 280 Нм.
Изменение фаз газораспределения (VTEC, VVTi, bi-VANOS) позволяет поднять момент и сдвинуть его в зону «нужных» оборотов. Самый изощренный способ – возможность изменения степени сжатия. Так, на 1,6-литровом турбо-двигателе SAAB, благодаря подвижной головке блока, она варьируется от 8:1 до 14:1. Результат – 308 Нм и 225 л.с.

Ну и теперь вырезка из какой то статьи, которая очень наглядно покажет нам разницу крутящего момента

Понять, что значат на практике «лишние» ньютон-метры и лошадиные силы, мы решили на примере двух новейших Volkswagen Passat с упомянутыми двухлитровыми моторами – турбо-дизелем и бензиновым атмосферником. У первого – 140 л.с. и 320 Нм, у второго – 150 л.с. и 200 Нм. Для кристальной чистоты эксперимента обе машины были с шестиступенчатыми механическими коробками (разницу передаточных отношений главной пары в данном случае считаем несущественной).
На дизельном Passat мы уже ездили, а потому хорошо знакомы с его неординарной натурой. На холостых и малых оборотах мотор не проявляет особого энтузиазма, но по достижении 1750 об./мин. (уже с этой отметки водителю доступны все 320 Нм момента) в корне преображается. На кривой хорошо видно, что амплитуда крутящего момента составляет 110 Нм, больше трети максимального значения! Эту разницу двигатель успевает преодолеть в промежутке между 1000 и 2000 об./мин. Уже под конец второй тысячи мотор мощно бросает Passat вперед. Ускорение не ослабевает вплоть до максимальных 4500 об./мин., следует переключение – и вновь изобилие тяги до самого верха. Еще переключение – все повторяется. Словно невидимый силач-великан тащит машину тросом, потом перехватывает руки и тащит снова – бурный разгон идет на каждой передаче, даже на пятой и шестой он остается впечатляющим. Если не мешкать при переключениях и не выпадать из диапазона 2000-4000 оборотов (а это не сложно благодаря исключительно точному приводу переключения), то дизельный Passat позволяет перемещаться в пространстве очень и очень интенсивно. Спортивно. Единственный минус, он же плюс – при разгоне «в пол» стрелка тахометра в мгновения пролетает короткую шкалу. Только успевай работать ручкой КПП.
Пора пересаживаться в бензиновую машину. Ее характер спокойнее. Passat реагирует на действия акселератора точно и отзывчиво. Мотор тянет уверенно с самого низа и до максимальных оборотов, но без подхватов и волнующих ускорений. Посмотрите, разница между моментом на холостом ходу и максимальным – всего 50 Нм, так что подхватам взяться просто неоткуда. Но управляться с такой динамикой удобнее – передачи длинные, с прогнозируемой тягой во всем рабочем диапазоне. Пока мотор перегоняет стрелку тахометра из левого нижнего угла в правый нижний, можно немного передохнуть, не надо строчить рычагом коробки. Ага, есть 6 500 – переключаемся. Но эмоции, эмоции от разгона: Они есть, но не такие, как в случае с дизелем. Здесь уже не чудо-силач тянет машину, а какой-то механический робот-ускоритель, с постоянным, точно тарированным усилием. Теперь самое сладкое. Машины стоят бок о бок на одной линии. Напомним, что у бензинового Passat превосходство в максимальной мощности на 10 л.с. Но проявляется оно только после 4 500 оборотов. А у дизеля превосходство в моменте, которое проявляется во всем диапазоне. Ну, любители дрэг-рэйсинга, ваши ставки?
Синхронный старт. Первые секунды машины идут ноздря в ноздрю. Затем дизель уступает четверть корпуса – мотор быстро выкрутился, надо менять передачу. Из-за более редких переключений бензиновый Passat выходит вперед почти на корпус. С набором скорости этот отрыв уменьшается. По паспорту в упражнении «до сотни» дизель проигрывает своему противнику всего 0,4 секунды. Это разница в пределах водительской погрешности. И максимальная скорость меньше лишь чуть-чуть – 209 км/ч против 213.
Но это на зачетной прямой. Там водители бросают сцепление, уже раскрутив моторы. А в городе, чтобы угнаться за дизелем, «бензину» приходится постоянно держать обороты близко к красной зоне. Вспомните графики – там, где дизельный двигатель уже почти набрал свои 140 л.с. (3500 об./мин.), у бензинового под педалью пока только сотня. Чтобы набрать столько же, ему нужно еще 1 500 оборотов. При этом первый набирает обороты максимальной мощности почти моментально (вот оно, превосходство момента!), а второй – значительно дольше. И на шоссе, двигаясь со скоростью 120 км/ч, «дизелю» для ускорения не потребуется переключение, а бензиновый Passat попросит передачу пониже.
В общем, на практике все получилось так, как предсказывала теория. Максимальная мощность двигателя прежде всего определяет максимальную скорость автомобиля. А крутящий момент – быстроту достижения мотором этой максимальной мощности. Таким образом, при сопоставимой мощности пресловутый разгон до «сотни» будет даваться более «моментному» двигателю меньшей кровью – он требует меньшей раскрутки перед стартом машины. В «мирных» условиях повседневного вождения это весомый фактор. Но и мощность крайне важна: момент не может разгонять автомобиль бесконечно – только до определенной скорости, которая, естественно, ограничивается мощностью. Вот и получается, что «лошади» и «ньютоны» тесно взаимосвязаны, и разить ими по отдельности оппонента в споре о моторах – дилетантство.
Как бы то ни было, практический итог этого противостояния противоречит общепринятому автолюбительскому мировоззрению. Мы однозначно признаем победителем турбо-дизель. Именно он больше подойдет водителям, ценящим динамику и азарт разгона. К тому же на его стороне экономичность и дешевизна топлива. А педанты, оценивающие превосходство динамики по голым цифрам, и любители ровных характеристик найдут свою правду в более привычном пока для России «бензине». И еще – у него правильный звук, если для кого-то это имеет большое значение.
Между прочим, результат нашего небольшого исследования отвечает мировым тенденциям автопрома – современные турбо-дизели, догнав бензиновые моторы по мощности, склонили чашу весов в свою сторону, благодаря большему моменту.

Вот как то так, на статью потрачено около 8 часов. так что просьба тем кто ниосилил, избежать всяких гадостей про многобукф

мой инстаграм Storogilov

Уважаемые, кто прочитал, отписывайтесь о прочтенном, а то может слишком заумная солянка получилась)
PS разжигающие холивар бензин-против дизеля, и разводящие бурлящие говна, будут наказаны) сначала удалю комментарий, потом запрещу комментировать.(это вынужденная мера, я никого ни к чему не призывал, просто объяснил что у дизеля чаще всего «полка момента более ровная»)

Источник https://techstop-ekb.ru/ismi/430-load.htm

Источник https://www.drive2.ru/l/2603575/

Источник https://www.drive2.com/b/645186/

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Previous post Пикапы — история и практика.
Next post Список автомобилей, которые не ржавеют со временем